Supplementary Material ## Application of Exogenous Ethylene Inhibits Postharvest Peel Browning of 'Huangguan' Pear Yurong Ma, Mengnan Yang, Jingjing Wang, Cai-Zhong Jiang* and Qingguo Wang* * Correspondence: Corresponding Author: Cai-Zhong Jiang, cjiang@ucdavis.edu; Qingguo Wang, wqgyyy@126.com ## 1 Supplementary Table **Supplementary Table 1.** Effects of ethylene (50 μ L/L) on titratable acidity (TA), total soluble solids (TSS) and firmness of 'Huangguan' pear flesh | | Storage time (d) | | | |--------------------------------|-------------------|----------------------|-----------------------| | | 0 | 100 | 200 | | TA (%) | | | | | control | 0.164 ± 0.004 | 0.123 ± 0.006^a | 0.114 ± 0.007^{a} | | air | | 0.120 ± 0.003^a | 0.112 ± 0.003^{a} | | ethylene | | 0.129 ± 0.005^a | 0.122 ± 0.007^a | | TSS (%) | | | | | control | 11.17 ± 0.15 | 11.73 ± 0.33^{a} | 10.93 ± 0.23^{b} | | air | | 11.83 ± 0.25^{a} | 11.23 ± 0.23^{ab} | | ethylene | | 12.27 ± 0.31^{a} | 11.47 ± 0.21^{a} | | Firmness (kg/cm ²) | | | | | control | 3.61 ± 0.18 | 3.31 ± 0.02^{ab} | 3.15 ± 0.06^{a} | | air | | 3.27 ± 0.06^{b} | 3.17 ± 0.10^{a} | | ethylene | | 3.43 ± 0.08^a | 3.21 ± 0.04^{a} | Control: fruits were rapidly cooled at 0° C; air: fruits were first placed at 20° C for 8 h, then held at 0° C; ethylene: fruits were first treated with ethylene (5 μ L/L) at 20° C for 8 h, then held at 0° C. Data are expressed as mean \pm SD (n = 3). Values in a column marked by the same letter were not statistically different (p> 0.05). To examine long-term effects of ethylene treatments on the fruit quality, the firmness, TA and TSC were measured using the pears harvested in 2013. The pears were randomly divided into 3 groups, including the control, 0 and 50 μ L/L ethylene treatment (18 fruits/replicate and 3 replicates/group. After treatment, pears were packed with foam sleeves, placed into trays wrapped with plastic film and stored at 0°C with RH 70%~80%. Samplings were taken at storage days of 0, 100 and 200. For TA, TSS and firmness analysis, 6 fruits were randomly picked from each replicate. For TA measurement, 5 g of fruit pulp were used and extracted with distilled water (25 mL), for 30 min. Then the mixture was filtered and 10 mL of the solution was titrated with 0.01 mol/L NaOH to pH 8.2. TA was expressed as percent malic acid. Fruit juice was collected onto a digital refractometer (ATAGO PAL-1, Tokyo, Japan) for TSS measurement of Brix. Flesh firmness was measured at the equator on four side of the skin-removed fruit, using a hand-held penetrometer (Wanger Instruments, US) with 8 mm plunger diameter. Firmness was the mean value of four independent readings for each pear and expressed as kg/cm².